首页> 外文OA文献 >Investigating differences in the ability of XplA/B-containing bacteria to degrade the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)
【2h】

Investigating differences in the ability of XplA/B-containing bacteria to degrade the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)

机译:研究含有Xpla / B的细菌降解爆炸性六氢-1,3,5-三硝基-1,3,5-三嗪(RDX)的能力差异

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The xenobiotic hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a toxic explosive and environmental pollutant. This study examines three bacterial species that degrade RDX, using it as a sole source of nitrogen for growth. Although isolated from diverse geographical locations, the species contain near identical copies of genes encoding the RDX-metabolising cytochrome P450, XplA and accompanying reductase, XplB. Sequence analysis indicates a single evolutionary origin for xplA and xplB as part of a genomic island, which has been distributed around the world via horizontal gene transfer. Despite the fact that xplA and xplB are highly conserved between species, Gordonia sp. KTR9 and Microbacterium sp. MA1 degrade RDX more slowly than Rhodococcus rhodochrous 11Y. Both Gordonia sp. KTR9 and Microbacterium sp. MA1 were found to contain single base-pair mutations in xplB which, following expression and purification, were found to encode inactive XplB protein. Additionally, the Gordonia sp. KTR9 XplB was fused to glutamine synthetase, which would be likely to sterically inhibit XplB activity. Although the glutamine synthetase is fused to XplB and truncated by 71 residues, it was found to be active. Glutamine synthetase has been implicated in the regulation of nitrogen levels; controlling nitrogen availability will be important for effective bioremediation of RDX.
机译:异种生物六氢-1,3,5-三硝基-1,3,5-三嗪(RDX)是有毒的爆炸物和环境污染物。这项研究检查了三种降解RDX的细菌,并将其用作生长的唯一氮源。尽管从不同的地理位置分离出来,但该物种包含几乎相同拷贝的编码RDX代谢细胞色素P450 XplA和伴随的还原酶XplB的基因。序列分析表明,xplA和xplB的单一进化起源是基因组岛的一部分,已通过水平基因转移在世界范围内分布。尽管事实上xplA和xplB在物种之间是高度保守的,Gordonia sp。 KTR9和Microbacterium sp。 MA1降解RDX的速度比Rhodococcus rhodochrous 11Y慢。既是Gordonia sp。 KTR9和Microbacterium sp。发现MA1在xplB中包含单个碱基对突变,其在表达和纯化后被发现编码无活性的XplB蛋白。此外,Gordonia sp。 KTR9 XplB与谷氨酰胺合成酶融合,这可能会在空间上抑制XplB活性。尽管谷氨酰胺合成酶与XplB融合并被71个残基截短,但发现它是有活性的。谷氨酰胺合成酶与氮水平的调节有关。控制氮的有效性对RDX的有效生物修复至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号